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ANALYSIS OF STRUCTURALLY ORTHOTROPIC BRIDGE DECK SYSTEMS
WITH STIFFENED OUTER EDGES

RICHARD BARES

1. INTRODUCTION

The concept of idealizing the true, structurally orthotropic plane system by an
equivalent orthotropic plate, having continuously distributed elastic rigidities per
unit of distance in the two directions X and Y, is applicable also in the case when
the edges have different stiffness than the inner portion of the over-all cross section
of the bridge desk. Such systems are quite frequent in bridge construction, the
longitudinal edges being often stiffened by special edge beams, or the outer beams
having a different section than the interior beams, etc. The analysis is greatly facilitated
when we apply the method of dimensionless coefficients [1], by means of which
all the internal forces are easy to compute for any case of external — usually vertical —
loading. In analysing the effects of edge-stiffening, we have first to express the trans-
verse rotations at the free longitudinal edges as produced due to the external load,
as well as such effects as induced in the system by transverse moment loading applied
at the free edges.

2. EDGE ROTATIONS DUE TO EXTERNAL LOADS

The transverse rotation at the edge, as produced there by external loading is
defined by the first partial derivative of the vertical deflection w with respect to y.
Using the relations given in [1], we find — after some rearranging — that for the
special case of a harmonic line load p(x) = ¥ p,, sin mnx/I the rotations at the edges

m

+b of the structurally orthotropic plane structure are given by the expression
(see fig. 1)

0] B(+b) = ; W [2(¥)mly=2s sin m—;m .
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The dimensjonless parameter ¢ in Eq. (1) has been discussed in [1], where also its
numerical values are given, as depending on the following three dimensionless
parameters: on the parameter of lateral stiffness 9 = b[I /*(er/ep) on the parameter
of torsional stiffness & = (yr + 75)[[2(1 + 1) +/erop] or upon the coefficient of the
middle member in the Huber Equation & = [# + o1 — )] and on the parameter
of contraction ability # = vz \/(epfer). The location ordinates of anyone point
under consideration are represented also by di-
mensionless parameters of location ¢ = my[b

X »
N and = me[b. In all the above formulae the
————fF—F= __'§E + symbols or, ¢p, 71, and yp denote the flexural
S, 1 i X and torsional rigidities for the directions X and
e H < Y, while v; denotes the transverse contraction
! coefficient of the material for the given
i H (%) structure.
5,0 y H - <
T
m———a—-=-q _ N | Fgl
1 1 1

When a harmonic load evenly distributed over the width of the structure is con-
sidered, we find, similarly, for the transverse rotations at the edges the expression

0 _ pal’b
) B(£b) =X N

where the dimensionless factor 1°, depending on 9, «, 7, and ¢ is again to be found
in [1], where also its numerical values are given.

ﬂ[TO(J’)m]:tb sin rﬁ::—x s

3. EFFECTS OF TRANSVERSE EDGE MOMENTS

With regard to the torsional stiffness of the edge beams or of the outer beams,
we have now to investigate the effects as produced across the system by edge moments
acting in transverse direction; the effects to be considered are the deflection w, the
edge rotations f§ and the transverse bending moments M.

When along the edges we apply external transverse moments, harmonic along X, i.e.

() M = ¥ M, sin @

then, in the absence of all external load between the two edges, the deflection at
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anyone point is given directly by the homogeneous part of the solution to the Huber
equation; thus

)] w(%, P)m = {e™[A,, cos mty + B,, sin mty] + e ™[E,, cos mty +
+ D, sin mty] sin H’—;Ef

where

1—e\’ 1—¢\
2 2
For the case that the external edge moments are symmetrical (antisymmetrical),

the deflection curve in the transverse direction is also symmetrical (antisymmetrical),
and Eq. (4) reduces in this case to the form

(5 w¥(x, ¥)m = {¥5 ch mny cos mty + B, sh mny sin mty} sin # .

or to the form

6) wA(X, ¥)m = {€4 sh mny cos mty + D7 ch mny sin mty} sin @ .

Of the latter two equations Eq. (5) pertains to the symmetrical case, while Eq. (6)
describes the antisymmetrical case.

The integration constants S, BS, €2, and D2 have to be found from the condi-
tions at the two boundaries y = +b where we have

mnx

) 1. Mp, = M, sin for y=+b, i.e.

o%w *w . max
—0p — — — = M, sin —
[ er 57 =1 V(erer) P ; :Lib

— al‘{l'Pm — aMTPm + aMPTm

8 2.0
®) Py ox dy

=0 for y=4b, ie.
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Thus we have first to compute the respective derivatives of Eq. (5) and (6) as indicated
in Eq. (7), and (8). Introducing the new symbols

s (5 e (7)o

we substitute the derivatives into the boundary conditions (7) and (8); rearranging,
we obtain the equations needed for computing the integration constants. Considering
the first of the boundary conditions as interpreted by Eq. (7), we write this equation
for the edge y = b and obtain

9 - —i%_i = W [(e — 1) ch mnb cos mthb — /(1 — &) sh mnb sin mtb] + '
m-0p
+ BJ[(e — 1) sh mnb sin mtb + /(1 — &%) ch mnb cos mtb] .

From the second boundary condition as given by (8), we find for the edge y = b,
similarly

(10)
S 1 + & 1 — & .
-Wi-n . sh mnb cos mtb + (1 + 1) P ch mnbsin mtb | +

+ fiﬁ,[(l + n)\/(l _2'_ s)shmnbcosmtb -(1- 11)\/<1 -2'- E)chmnb sin mtb] =0.

Solving these two equations for the unknown integration constants %>, B3 we obtain

(1) of o — Mab®  Gn
mZQPO-Z Gm + %m
ngl’az (Em + %m
where

1+
1—

(13) &, =(1 + n) shmn'mcos mt'm — (1 — 1) ( E) ch mn'n sin mt'n ,
g

$

L

=(1-1) (i + E) sh mn'n cos mt'n + (1 + n) ch mn'z sin mt'n,
— €

=[(1 + 2¢) — #(2 + n)] sh mn'n ch mn'n

& = [(1 = 2¢) + n(2 — n)] \/(1 + 8) sin mt'n cos mt'% .

3

1—c¢
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Considering now the antisymmetrical case we use Eq. (7); writing it for the edge
y = b we obtain

M,
2

m*pw

(14) - = C2[(c — 1) sh mnb cos mtb — /(1 — *) ch mnb sin mtb] +

2

+ D[ /(1 — &%) sh mnb cos mtb + (¢ — #) ch mnb sin mtb] .

Similarly, using Eq. (8) and writing this equation for the edge y = b, we find

- (if,[(l —1) \/(1 '2" 8) ch mnb cos mtb + (1 + n)\/(l ; a)shmnb sin mtb] +

+ D4 [(1 +1) \/(?) ch mnb cos mtb — (1 — 1) (1 + E)sh mnbsinmtb] =0.

2

On solving the latter two equations (14) and (15) simultaneously we obtain for the
integration constants the expressions

(16) 4= — M b A ’
mZQPo'z @m - gm
(17) ﬁA = — 1‘4‘mb2 5:

m?gpo® €, — §
Here the factors € and & are defined as in (13), and

1+¢ . ,
+ )sh mn'w sin mt'n

(18) 67 = (1 + 1) ch mn'n cos mt'w — (1 — n) (1 —

$n =(1—-1n) (i + 8) ch mn'n cos mt'n + (1 + ) sh mn'n sin mt'z .
— g

Having thus found the constants A5, B85, €4, and D* we substitute their respective
values into the definition-equation for the deflection w. For the symmetrical moment
loading we thus use equation (5) to obtain

2
(19) W5 y) = ¥ — M g5(y), sin P,
m QP l
where

1 chmn'e cos mt'¢GS + sh mn'e sin mt' @,
(20) PP = —— Ld L .
. m-o (Em + g’m
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Considering next the antisymmetrical case we apply equation (6) and obtain

mnx

e W) = 3 - Mo g(y), 5 22,
or
where now
1 shmn'e cos mt' G2 + ch mn'e sin mt'oHA
22 4(y),, = m .
@ - e

In the latter equations (20) and (22), which define the newly introduced dimensionless

coefficients ° and &4, we have used the dimensionless ordinates of location ¢.

The factors &(9, «, 7, ¢) are dimensionless; they are depending on the parameter
of the lateral stiffness 9, on the parameter of torsional stiffness «, on the parameter
of contraction ability #, and — naturally — also on the dimensionless parameter
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of location ¢, giving the location of the respective point at which the effect is sought.
The values of the dimensionless coefficients #° = #%(y), and &* = &4(y), are
represented by the graphs in figures 2 and 9. The graphs have been drawn with §
as the independent variable for the values « = 0, « = 1, # = 0, # = 0-25, and for
different point locations ¢ as given in the figures.
The edge rotations due to the externally applied moments at the edges y = +b
are given by the first partial derivative of the deflection w with respect to y. Thus
i for the case of symmetrical edge moments we have
|
|

23) oy -

(b)w sin =,
m QP l
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where

(24) \/ (1 .
(b, = 2 ) shmn'zn cos mt'n(aGs + H3) 4 chmn'zsin mt'n(aHS — G5)
m mo Gm + %m €m + %m ’

while for the case of antisymmetrical edge moments we obtain

) B = T — 22 1), sin ™,
m 2p l
where

(26) L
FA(b) _ \/( 2 ) ch mn’n cos mt'n((ﬁﬁa + Sj":) + sh mn'zn sin mﬁc(aSj,ﬁ— (5:)
m mo @m + %m Gm + gm . .

The factors I'S(9, a, ) and I'*(39, o, 77) as defined by (24) and (25), respectively,
are dimensionless, and again they depend on the parameter of lateral stiffness 9,
on the parameter of torsional stiffness o, and on the parameter of contraction ability #.
The numerical values of the dimensionless coefficients I'® = I'S(b);, I'* = I'*(b),,
have been computed for « = 0, @ = 1, and for # = 0-25; the results of the comput-
ations are represented by the graphs of fig. 10 and 11, the graphs being drawn for the
location ordinates.

Finally, the transverse bending moments due to the edges being loaded by sym-
metrical edge-moments, are obtained as

(27) M} = T, () sin =
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where

(28) (y),, = ch mn'g cos mt'[(e — 1) 65 + /(1 — &%) H7] +

4 Shmn'gsin mt'p[(z — ) $5 — J(1 — ¢?) G,
l Similarly, when the antisymmetrical edge moments are applied, we find for the
transverse bending moments the expression
. (29) M} = TM#4(3)nsin ==,
m
101
4 \-\\\ Yy é/ S
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__ shmn’o cos mt'o[Ga(e — 1) + $a /(1 — &3]

(gm - '?m

4 chmn'e sin mt'o[Sa(e — 1) — 64 /(1 — €2)]

(Em_ %m

+

Equations (28) and (30) define the last two of the factors which are needed in the
complete solution to the problem of edge stiffening. The dimensionless factors
¥(3, a, 1, @) depend again on the parameter of lateral stiffness 9, on the parameter
of torsional stiffness a, on the parameter of contraction ability #, and — of necessity —
on the parameter ¢ which defined the location of the respective point for which the
transverse bending moment is required. With $ as independent variable the dimen-
sionless factors ¥ = ¥%(y), and P4 = P4(y), are represented by the graphs shown
in the figures 12 to 19. The graphs have been constructed fora =0, 2 = 1,7 =0,
and n = 0-25, as well as for different values of ¢, as shown directly in the diagrams.
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Table 1. Interpolation Function F(k)

1-st degree interpolation — precise

Interpolation for #

Factor| & 3 Interpolation for a
a=0 =1
0-05 0-05 a
g;g gl:07-1-183
o5 (4n) (4n)
0-60
! ql'14 (1-a)
50 50
0-05 4n? 0-05
l a(0-733+0-68) . e(1 —a)
010 2:15-2-519 0-65
ot | L | @ ()
70
0-35 Ol al-14 e(1 —a)
! (4n) ; )
5o 50
0-05 o
0-05
l (4,,)2 (4”)1'0728—0'23 0-10
045 l a(1'07—1-183)
' 0-40
s | o050 045
l (4”)10263—0-55 l a(0-79—0-538)
0-95 0-60 é
4n) ]
1-50 0-65
l (4n)t32 i) Ve
50 50
0-05 (4n)? 0-05 £0°0073
010 010 '
. 5 @n) l (0-948—0-066) ‘
r An) 0-55
0-60
! Je
50 50
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Table 1. (cont.)

Interpolation for #
Factor| & 3 Interpolation for «
x=0 =1
0-05 .
! wess |0 )
0-20
0-10
025 l (07127 1'559)
Ll (4n) @ 055
0-60
0-60
0-65 . -
! (% : S
50 5-0
0-05 0-05
1 o(1°338-0-049)
0-40
0-45
p4 (4n) (4) ! Je
0-95
1-00
l al-ll . e(l—a)
5.0 50

As has been elsewhere derived, for anyone of the factors &, I', or P, their respective
values ®(y)p, I'(y)ms ¥(»)ms Which correspond to the m-th term of the pertaining
Fourier series are identical to the values &(y),, I'(y);, ¥(y);, pertaining to the first
term of the respective series, but developped with the use of the reduced magnitude
m3 of the parameter of lateral stiffness. For practical design purposes the effects
due to the outer beams having different stiffness (as compared with the intermediate
beams) are — in practically all cases of interest — with sufficient accuracy obtained
with only the first term of the respective Fourier series.

To evaluate the dimensionless factors for intermediate values of « and #, we can
either employ the computation by means of the above given theoretical formulae,
but — since such a procedure would be rather tedious, we find the respective values
by means of the interpolation formula

(31) 'xk = xmin + (xmnx - xmin) F(k) .
Here, the symbol F(k) denotes the respective functions of interpolation, tabulated
in the two tables below. The numerical coefficients in the functions F(k) have been
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Table 2. Interpolation Function

2-nd degree interpolation — simplified

Interpolation for #
Factor| 8 3 Interpolation for a
a=10 =1
0-05 0-05 q(1°07-1:188)
0-35
&5 l (4n) (4n)
0-40
o
50 5-0 ‘/
0-05 0-05 @(0°-738+0-68) (1-2)
0-35
o4 l (4n) (4n)
0-40 ql'14 (1-a)
5.0 50
0-05 0-05 q(1:07—1:189)
0-35
rs l (4m) (4n)
0-40
o
50 5.0 ‘/
005 0-05 00073
0.10 o(0°948-0:07)
r4 (4n) (4n) 0-35
0-40
a
5.0 50 J
0-05 .
ps | ) (4n) (@n) 0-05 Ja
50 50
0-05 0-05 a(1-333—o-os
0-35
P4 l (@n) (4n)
0-40
5-0 50 Ja

computed (on the basis of a considerable number of analysed cases) so as to give
an error of less than 2:5% for anyone of the dimensionless factors (1-st degree inter-
polation), or to give an error of less than 2:5% in all the governing (i.e. maximum)
values in all the dimensionless factors for any arbitrary combination of 8, & and 7
(2-nd degree interpolation — see [2]). The respective formulae defining the functions
of interpolation are given in Tables 1 and 2 below.
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4. COMPLETE SOLUTION FOR SYSTEMS WITH EDGE BEAMS

We consider the system shown in Fig. 20: the length of span is /, the width of the
structure is 2b, and at both the ends of the span we assume the longitudinal beams
to be interconnected by means of supporting cross beams, stiff enough to prevent
any transverse rotation over the cross-section of the bridge deck. The rigidity factors
per unit of distance are g1, yr and gp, yp for the longitudinal and the lateral directions,
respectively. Finally, we assume that the two edge beams (Fig. 20) are markedly
stiffer than the interior beams, the rigidity factors of anyone of the two edge beams
being gr (flexure) and 7 (torsion).

e i H <

B T )
4 ,
25 L o

#—+
b

Fig. 20. Fig. 21.

g3

Fanr
=

&

The analysis of the just described structurally orthotropical system will be per-
formed by the method as indicated in [3]. First we assume that the edge beams are
separated (by longitudinal gaps) from the middle part of the bridge deck. The mutual
interaction of the parts is represented by the internal components T and M (sce
Fig. 21). For any case of external load varying harmonically along X, also the
internal forces as produced by such a load will be in the X-direction harmonic.

Next we perform partial analysis for the interior part of the separately taken
bridge deck, idealizing this structural part by an equivalent orthotropic plate. The
edge loads due to the components T and M are assumed as additional external loads,
and they are thus considered as to act simultaneously with the true external load p.
For the total external load (i.e. the true load p and the assumed additional load due
to Tand M) we have to compute the deflections w as well as the transverse rotations g
which such total load induces at the two edges y = +b. Using only the first terms
of the respective Fourier expansions, we apply the dimensionless parameters K
(see [1]) and & (defined in the preceding chapter) to find the vertical deflection w
at the edges y = +b to be given as follows

. l4 . X | Py Tl Tz :|
32) wix,y =0b)= sin — | =~ K(e, b) — — K(b, b)) — —= K(b, b) | —
(32) wle,y = b) = 5 sin ™| 24 K(e ) = Z0K(.8) = 52K,

— B i T [, + My) 95(6) + (M, — M) S4(B)],
20r @
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ooy = =8 = 5 I[Plx( -5)-Dx(-bp -1 K( b, — )]
- Ebism"—"[(Ml + My) 85(b) — (M — M) #4(b)] .
Qp l

In equation (32), instead of the edge moments M, and M, (applied at the edges
y = %b respectively) their symmetrical equivalent (M; + M,)[2 and their anti-
symmetrical equivalents (M; — M,)[2 have been used. The end rotations at the
edges of the equivalent orthotropic plate are, for the same total external load as in the
foregoing case, defined by the two equations

(33) B(x,y =b) = [p (e, b) — Ty o(b, b) ~ T, 7(—b, b)] —

4\/(TP) 2 °
b .

- 2—sm—[(M1 + M) Ty + (Mg — My) TG,]
P

and

ﬂ(x,y =-b) = [p'r(e ~b)— Ty ob, —b) ~ T, ""(_bv _b)] -

4 \/ (QTQP) 2
b

- Esm—[(Ml + M) TGy — (My — M) I'g,] .
P

Now we have to compute the vertical deflection for the edge beams assumed
to be separated from the middle part of the bridge deck. Using again the Fourier
series and considering only the first term of the series we find, that in case of an
externaly applied harmonic load T, the corresponding deflections of edge beams “1”
and “2” (Fig. 20, 21) are

(34) w(x); = —— Tysin =,
n°ar, l
4
w(x), = l_ T, sin == .
ar, l

An externally applied torque [ M, — Ty(b;[2)] sin x/I induces transverse rotation
of the edge beam section equal to the angle of twist produced by the same torque.
At any ordinate X the transverse rotation of edge beam “1’ is thus represented
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by the equation

(352)  olx); = -

' x 2
Ml—Tlﬁ)l cosde Ml—Tlﬁ L
2/n), l 2)n . mx
SmT ).

yTl yTl

For the transverse rotation of edge beam “2” (see Fig. 20, 21) we obtain, similarly,
the equation

(35b) o(x), =

T2
Finally, we have to take into account the conditions of continuity at the two edges '

y = 1 b; briefly stated these conditions require that the deformations at the outer
two edges of the middle — equivalent — bridge deck be compatible with the deform-
ations at the adjacent surfaces of the two edge beams. The interior part as represented
by the equivalent orthotropic plate is, according to the above discussion, subjected
to the “total” external load (true load p and assumed additional load due to the
components T and M). This total load induces at the outer edges y = +b of the
equivalent plate vertical deflections w as well as transverse rotations . Similarly,
the vertical deflections and the transverse rotations for each of the two edge beams
17, “2”, due now to the action of only the assumed external load by the components
Tand M, have to be computed, considering either of the edge beams to act separately.
The pertaining values of the deflections and of the rotations must be of equal magni-
tude for the adjacent surfaces of the separately considered elements.

The mathematical representation of the continuity conditions to be met at the two
boundaries y = b, is as follows

(36) w(x, y= b) = W(x)l ’ ﬂ(y = b) = (P(x)l ’ .

W5y = =b) = w(xs, B(y = —b) = o(x)s

1y The same expression is obtained for the case of a cantilever beam of length //2, clamped
into the rigid cross beam at the support; when the same external torque as in (35a) is applied
the angle of twist at any ordinate X is

M— Tf’i) 2
X

1 * by X uz by X ( 2
=_— M—T — }sin —d M—T-—=])sin—dx |=—5—"— sin—
P(x) 7y [J;x( 2)51n ] X+ xj; > si 7 7'2}’1‘ sin ]

and for x = /2 (midspan) this formula reduces to the simple expression

— M—-T—

1 [u2 b\ . nx ( 2) 2

Py = = x{M—-T—=|]sin—dx=>———-=1°,
’tlo 2 l

S|
-

ﬂz;T
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Employing now the boundary conditions (36) together with the set of equations
(32), ... to (35) we can compute all the four redundant components Ty, T, M;,
and M,. The computation is especially facilitated if the iterative procedure indicated
in [3] is applied. Once the components T and M are known, the further calculation
can follow similar pattern as in the method of dimensionless parameters [1]. Since
all the stress and deformation components have the same harmonic variation alon X,
the solution is with respect to x entirely independent; this may be utilised in such
a manner that — for any value of m — the solution at only one ordinate x, say at
x = I[2 is established, which evidently simplifies all the computation.

A similar procedure can be employed when — in the absence of edge beams at
¥y = £b — the section for the two exterior beams is markedly different as compared
with the remaining interior beams (see [3]). In [3] also the application of the method
of dimensionless parameters is shown for the case of prestressed bridge systems.
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ANALYSIS OF STRUCTUALLY ORTHOTROPIC BRIDGE DECK SYSTEMS WITH
STIFFENED OUTER EDGES

The concept of substituting — in the analysis — an equivalent orthotropic plate (with conti-
nuously distributed rigidities) for the true, structurally orthotropic plane structure is shown
to be of utility also in the analysis of such bridge deck plate-beam grillages, where the outer edge
beams are much stiffer in flexure and torsion than the remaining (intermediate) main beams.
In bridge construction, such systems are quite frequent since often the edges are stiffened by
especial edge beams or the section of the exterior main beams is stiffer than for the intermediate
beams, etc. The method of dimensionless parameters [1] is used in the analysis, and it is shown
that this approach is considerably expeditious. Theoretical formulae are given for representation
of the effects due to transverse edge-moment loads, and some useful dimensionless coefficients
are newly introduced and represented by diagrams showing their respective curves of variation
for a wide range of the independent parameters; the diagrams have been constructed on the base
of numerous computations and the will be found to be of use in practical design calculations.
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